An overview of underground energy-related product storage and sequestration

Abstract

Storage of energy-related products in the geological subsurface provides reserve capacity, resilience, and security to the energy supply chain. Sequestration of energy-related products ensures long-term isolation from the environment and, for CO2, a reduction in atmospheric emissions. Both porous-rock media and engineered caverns can provide the large storage volumes needed for energy security and supply-chain resilience today and in the future. Methods for site characterization and modelling, monitoring, and inventory verification have been developed and deployed to identify and mitigate geological threats and hazards such as induced seismicity and loss of containment. Broader considerations such as life-cycle analysis, environment, social and governance (ESG) impact and effective engagement with stakeholders can reduce project uncertainty and cost while promoting sustainability during the ongoing energy transition toward net-zero or low-carbon economies.

Publication
Geological Society, London, Special Publications
Wencheng Jin
Wencheng Jin
Assistant Professor of Petroleum Engineering

My research interests include novel rock breakage and fracture for subsurface resource recovery, data-driven and physics-based multiphysics modeling in porous and fractured media, and granular material flow characterization and modeling. My research provides solutions for energy/minerals recovery & storage, material handling, and GeoHazards prediction.